High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays.

نویسندگان

  • Meidan Ye
  • Jiaojiao Gong
  • Yuekun Lai
  • Changjian Lin
  • Zhiqun Lin
چکیده

TiO(2) nanotube arrays (TNTAs) sensitized by palladium quantum dots (Pd QDs) exhibit highly efficient photoelectrocatalytic hydrogen generation. Vertically oriented TNTAs were prepared by a three-step electrochemical anodization. Subsequently, Pd QDs with uniform size and narrow size distribution were formed on TiO(2) nanotubes by a modified hydrothermal reaction (i.e., yielding nanocomposites of Pd QDs deposited on TNTAs, Pd@TNTAs). By exploiting Pd@TNTA nanocomposites as both photoanode and cathode, a substantially increased photon-to-current conversion efficiency of nearly 100% at λ = 330 nm and a greatly promoted photocatalytic hydrogen production rate of 592 μmol·h(-1)·cm(-2) under 320 mW·cm(-2) irradiation were achieved. The synergy between nanotubular structures of TiO(2) and uniformly dispersed Pd QDs on TiO(2) facilitated the charge transfer of photoinduced electrons from TiO(2) nanotubes to Pd QDs and the high activity of Pd QDs catalytic center, thereby leading to high-efficiency photoelectrocatalytic hydrogen generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution

A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical an...

متن کامل

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR), scanning e...

متن کامل

A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells

We report that the efficiency of ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO2 nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QDs are deposited on the TNTs by a chemical bath deposition method. The experimental results show that the ...

متن کامل

Three dimensional-TiO(2) nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells.

Facile synthesis of TiO2 nanotube branched (length ∼0.5 μm) thin hollow-nanofibers is reported. The hierarchical three dimensional photoanodes (H-TiO2-NFs) (only ∼1 μm thick) demonstrate their excellent candidature as photoanodes in QD-sensitized solar cells, exhibiting ∼3-fold higher energy conversion efficiency (η = 2.8%, Jsc = 8.8 mA cm(-2)) than that of the directly grown nanotube arrays on...

متن کامل

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 38  شماره 

صفحات  -

تاریخ انتشار 2012